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1 Short Summary of Research in Problem-Solving,

Planning, and Diagnosis

Research from June 1989 through October 1992 focussed on concept formation, cluster-

ing, and supervised learning for purposes of improving the efficiency of problem-solving,

planning, and diagnosis. These projects have resulted in two dissertations on clustering,

explanation-based learning, and means-ends planning, and publications in conferences

and workshops, several book chapters, and journals; a complete Bibliography of NASA

Ames supported publications appears in Section 2. This section gives cursory overviews

of each research tract, but more detailed descriptions of the various projects follow in

subsequent sections.

1.1 Clustering of Explanations and Problem-Solving Experi-

ences

Research by Jungsoon Yoo culminated in a system known as Exort (EXplanation OR-

ganizer), which clusters problem-solving experiences into similarity classes to facilitate

reuse of past experience in new situations (10, 11, 12, 19, 25, 28). The system com-

bines and unifies inductive and explanation-based learning. The system begins with a

domain theory which describes the basic rules of inference for a domain. As problems are

solved using this domain theory, solutions are incrementally clustered into an abstrac-

tion hierarchy of solutions. The hierarchy identifies and segregates distinct solution types

along the horizontal dimension of the hierarchy. The vertical dimension of the hierarchy

serves to specialize general solutions into more specialized solution categories. As the

hierarchy is constructed, subsequent problems are categorized relative to it, and partial

solutions uncovered during this categorization are accumulated into a complete solution

for the new problem. Problem-solving only turns to the original domain theory when

the abstraction hierarchy is incomplete, in the sense that it does not support a complete

solution to the problem. With training, the relatively efficient process of categorization

and reuse displaces the expensive process of domain theory search, thus improving overall

problem-solving efficiency.

The contributions of this work are several fold. First, we have examined explanation-

based learning and reuse in the context of multiple solution types. That is, many studies

have examined the speedup brought about by explanation-based learning for solving (or

proving) single goals, predicates, or problem types. In contrast, EXOR is a complete

problem-solving architecture that shows how problem solving over a problem set exhibit-

ing multiple top-level goals can be coordinated. Methodologically, the work breaks up

the measurement of problem-solving effort into the effort contributed by domain theory

search and the effort contributed by reusing previous, learned knowledge. Generally,

research on problem-solving and explanation-based learning collapses these components

into a single measure of overall effort. The work also contributes to some specific issues

of explanation-based learning; notably, it links the operationality or usability of learned

knowledge to its cost-effectiveness by a formal ratio of the probability that a solution

category is likely to lead to successful problem solving, to the problem-solving cost that
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is likely to beaccruedby reuseof the generalizedsolution associatedwith that category
(10, 25). The researchalsohas implications for human problemsolving (20).

1.2 Clustering and Means-Ends Planning

Research in planning by Hun Yang has resulted in PLOT, a system that clusters macro

operators into similarity classes in order to facilitate reuse (4, 13, 15, 18, 27). In spirit,

it is very similar to Yoo's work as described above, but it is designed for means-ends

planning and it adds to the 'clustering for reuse' paradigm in other significant ways. In

particular, PLOT clusters macro-operators obtained through means-ends analysis based

on their applicability (i.e. PRE and ADD) conditions. During performance, previously-

clustered operators are retrieved based on their applicability to the current situation,

and can be used as is or modified to fit the current situation. Thus, the system combines

macro-learning ability, with search control learning, and certain case-based abilities to

adapt previous plans to an existing situation. The combination of these capabilities leads

to significant speedups in planning performance. The ability to modify macro-operators

to better fit the current situation is a major conceptual difference between PLOT and

EXOR. The modification of macro-operators retrieved during planning is facilitated by

storing the plan derivation tree along with each macro. This tree can be efficiently

reorganized, and new macros derived, if circumstances warrant modification.

The primary contributions of PLOT lie in its unification of several planning paradigms

- namely means-ends and case-based planning. In particular, previous case-based plan-

ners rely almost exclusively on a case library of user-coded plans. If this case library

is incomplete then planning cannot proceed on certain tasks. By suitably combining

case-based abilities with weak (means-ends) methods, the system can circumvent the

incompleteness problem, while still using past cases, when relevant, to improve planning

efficiency. In addition, PLOT uses a similarity metric (as does ExoR), which effectively

serves as search-control knowledge for macro-operator retrieval. The system is relatively

novel in its learning of search control knowledge for macro-operator application; in con-

trast, most 'learning to plan' systems rely either exclusively on search control or macros

to improve efficiency. By learning both, the system reduces the effective branching factor

of search (through improved search control), and the effective depth of search (through

macro-operators).

1.3 Diagnosis of Space Shuttle and Space Station Operating

Modes

Accurate and timely fault diagnosis is critical in the life cycle of many physical systems.

Methods of machine induction can be used to identify system parameters that are good

candidates for dynamic probing and continuous sensing over a population of diagnostic

episodes. More specifically, we employ clustering to identify similarity classes of system

behavior in terms of observable system quantities (2, 5, 6). These similarity classes are

exploited to minimize the cost of probing during fault isolation. In addition to building

efficient diagnostic procedures, these learning methods inform design activities such as
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sensor placement and the identification of fault modes.

This research borrows lessons from our research on problem-solving and planning

described above. In addition, we have applied these clustering techniques using a model

of a life support subsystem from Space Station Freedom, and from telemetry data of

the RCS system from the Space Shuttle. in both cases, highly accurate diagnoses are

achieved in a relatively efficient manner. This work forms the core of our ongoing research

into performance improvement through clustering.

1.4 Summary

These research tracts are linked by the idea that clustering methods can segregate 'ob-

servations' (e.g., problem solutions, plans, system behaviors) into similarity classes that

can facilitate various kinds of reuse. There are several contributions that we summarize

as follows:

Problem-solving can be rendered more efficient through categorization relative

to past experiences. This work contributes in several ways to the literature on

explanation-based and speedup learning, notably in representing experiences at

appropriate levels of abstraction and using cost-effective features to index and re-

trieve this knowledge.

Macro operators learned during planning can be adapted to current situations in

a way that facilitates more efficient planning in the future. The effectiveness of

this reuse strategy depends on retrieving appropriate macros, and adapting these

in a flexible way. This planning work unifies planning strategies of subtasking and

case-based planning.

Ideas in these earlier systems have led to two distinct research directions in diagnosis

of NASA systems. We have obtained promising results in discovering operating

modes of the Space Shuttle RCS from telemetry data, and we have combined model-

based reasoning and clustering to do the same with a model of a Space Station life

support subsystem. Currently, this work is our primary focus.

The methods that we have employed are largely inspired by our earlier work with a

clustering system called COBWEB. As a convenience to the reader, we summarize this

learning technique in the Section 3. We then move to more detailed descriptions of

various projects in subsequent sections.
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3 Clustering using COBWEB

Unsupervised tasks require the learner to find categories in data. However, there are a

vast number of ways to group observations into contrast categories. Clearly, most of these

possibilities are not informative to a learner: To ferret out the informative categorizations

an unsupervised system relies on a measure of category quality, and a method of searching

through the possibilities for the categorization that optimizes (or is satisfactory by) this

measure. Gluck and Corter (1985) suggest that certain categories are preferred because

they best facilitate predictions about observations in the environment. If observations are

represented as sets of features, Vj, then Corter and Gluck's measure of category utility

can be partially described as a tradeoff between the expected number of features that

can be correctly predicted about a member of a category Ck and the proportion of the

environment, P(Ck), to which those predictions apply:

P(Ck)E(# of correctly predicted VjlCk).

For example, little can be predicted about a highly-general category like 'animals', but

those features that can be predicted (e.g., 'animate') apply to a large population. In con-

trast, many features can be predicted with near certainty about highly-specific categories

like 'robins', but these predictions are true of a relatively small population. Intuitively,

a category of intermediate generality such as 'birds' maximizes the tradeoff between the

expected number of accurate predictions, and the scope of their application.

The expectation can be fnrther formalized by assuming that predictions will be gen-

erated by a probability matching strategy: one can predict a feature with probability

P(VjlCk), and this prediction will be correct with the same probability. Thus,

E(# of correctly predicted WICk) = _j P(VjlCk) 2.

Gluck & Corter (1985) define category utility as the increase in the expected number of

features that can be correctly predicted, given knowledge of a category, over the expected

number of correct predictions without such knowledge:

CU(Ck) = P(Ck)[Zj P(VjIC_) _ - Ej P(I"5)21.

Note that by moving the P(Ck) term into the summation and applying Bayes rule

P(Ck) Zj P(ViICk) 2 = Za P(V_)P(CklVJ)P(ViICk) •

Thus, CU(Ck) is also a tradeoff between standard measures of cue validity, P(CklV/),

and category validity, P(VjlCk), weighted by the probability of V/. As Medin (1983)

notes, cue validity will tend to be higher for very general categories, since they have

fewer contrasts. Inversely, category validity will tend to be higher for highly specific

categories. An alternative measure that is based on information-theoretic principles, but

which leads to very similar clusters is given by:

CU(Ck) = P(Ck)[Ej P(VjlCk) log2 P(VjlCk) - Ej P(Vj) log_ P(Vj)2].
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Figure 1: A probabilistic concept tree over 'imaginary' animal descriptions.

A concept formation system called COBWEB (Fisher, 1987) uses category utility to

partition a set of observations into contrasting categories, Ck, so as to maximize the

average utility of categories in the partition,

_';=, cu(c_)
11.

where n is the number of categories in the partition. Because category utility requires

only information about individual feature distributions within each Ck, one can effectively

represent a category with a probabilistic or independent cue representation (Smith &

Merlin, 1981), where each feature, Vj, is weighted by P(I._ICk).

Figure 1 illustrates how COBWEB organizes categories at multiple levels of abstraction.

In this example, observations correspond to animal descriptions. Each category is also

weighted by the proportion of observations, P(Ck), classified under it.

The method that COBWEB uses tO incorporate a new observation into an existing

categorization tree is designed for simplicity and efficiency. COBWEB assimilates an

observation by evaluating the partitions that result by adding the observation to each

existing category, and the partition that results from creating a new singleton category.

Intuitively, this latter action occurs if the observation is sufficiently dissimilar from each

of the existing categories. It then evaluates each of these alternatives using category

utility and retains the best choice. Incorporating a new animal description into the tree

of Figure 1 would require three evaluations at the top level of the tree: adding the instance

to the 'vertebrate' category, adding it to the 'invertebrate' category, and creating a new



categorythat contained only the new instance. If the instanceis incorporated into an
existing category,then the observationis assimilatedinto the respectivesubtreeby the
sameprocedure.Andersonand Matessa(1991)describeanapproachin whicha Bayesian
measureguidesobject assimilation in the samemanner.

We noted that categoryutility and COBWEBweremotivated by a desireto facilitate
inference- in this case, the prediction of features that are not directly observedin a
newobject. As with assimilation, COBWEBusescategoryutility to guideobject catego-
rization: an observationis sorteddown a path of 'best matching' categoriesto a point
where the unknown feature is best predicted. Somefeaturesmay be best predicted at
the leaves(specific, past instances)of the categorizationtree, while others may be best
predictedat categoriesof intermediategenerality (Fisher, 1989).For example,considera
zoologicalcategorizationthat decomposes'animals' into 'vertebrates'and 'invertebrates',
and then further decomposesthesecategoriesinto 'mammals', 'birds', etc.. If weobserve
that an observationhas 'feathers', then the path of best matchingcategorieswill include
'animals', 'vertebrates', and 'birds'. During top-down categorizationwe may chooseto
predict that the object is probably 'animate' when categorizationreachesthe 'animal'
category,that it hasa 'backbone'when categor!zationreachesthe 'vertebrate' category,
and that it probably 'flies' at the 'bird' category. Thus, to the extent possible, inferences

about an incomplete observation are accumulated as one descends the categorization hi-

erarchy. This ability improves with learning. The exact nature of the learning curve

and best point of prediction varies between features, and is based on the degree that the

features are intercorrelated with other features (Fisher ,_ Langley, 1990).

4 EXOR: Improving Problem-Solving Efficiency through

Categorization

This section describes a categorization model of problem solving inspired by research on

COBWEB. We open with a view of problem solving as a search-intensive process, then

move to issues of learning that render the task more efficient.

4.1 Problem Solving as Search

Traditionally, much of the research on problem solving in AI and cognitive psychology

view it as a search task (Simon, 1969). Given a problem description, the task is to search

background knowledge for a solution that satisfies all the constraints in the problem's

description. As an illustrative example, consider an algebra story problem like those

cataloged by Mayer (1981):

",4 train leaves a station and travels east at 72 km/h. Three hours later a

second train leaves and travels east at 120 km/h. How long will it take to

overtake the first train?"

We assume that a (human or machine) problem solver's background knowledge includes

domain-specific knowledge about motion problems (e.g., D = R × T) and general algebraic
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knowledge(e.g.,a • b = c _ a = c/b). Problem solving requires a search of the possible

ways to chain these background rules together in order to derive a complete solution.

However, there are many factors that can complicate the process. In some cases the

problem solver's knowledge may be incorrect or incomplete, and the problem solver may

or may not have access to external assistance. For example, the problem solver may

realize that the time, T2, traveled by the second train equals the distance that it has

traveled divided by its rate (T2 = D2/120), thus triggering an attempt to derive D2 from

the known facts: D2 = R2 x T_ = 120 x T2. However, this circularity leads to a 'dead end'.

Alternatively, the problem solver might observe that the second train travels three hours

less than the first train, or T_ = T1 - 3. Thus, solving T1 provides a solution to T2. In

general, many paths may be tried before a solution is found. The line of reasoning above

will be successful if the problem solver observes that the distances traveled by the two

trains to point of overtake are equal, D1 = D2. This additional constraint is necessary to

solve the problem. If the problem solver fails to encode this knowledge from the problem

statement or lacks background knowledge to exploit it, then this line of reasoning will
fail.

An alternative solution to the overtake problem is abbreviated in Figure 2(a). The

solution is expressed in a formal notation required by the computer, but intuitively it

encodes that the time until overtake (T = D/R) is obtained from the distance that must

be made up by the faster train, where D1 is the distance traveled by the first train before

the second train starts, and the relative rate of travel of the second train (R = R2 - R1).

Again, if appropriate knowledge is lacking or incorrect, then this line of reasoning will

fail as well.

The search for a correct solution to a problem will succeed if the necessary constraints

and facts are encoded from the problem statement and the required background knowl-

edge is present. In cases where problem solving is being learned, simultaneous fulfillment

of these conditions is often not realizable. Rather, external coaching is required by an

instructor. Nonetheless, the computer model that we will describe assumes that any

problem presented to the system can be solved correctly and to completion. In this case,

learning is exclusively concerned with speeding up problem solving. Initially, even with

complete and correct background knowledge, the problem solver may search in a rela-

tively unguided manner through many possible partial solutions, until happening upon

a correct one. During this search, however, information about productive paths can be

gleaned, and reused to make future problem solving more efficient. This speedup-learning

focus is shared by Larkin's (1981) study of learning in formal domains, in which subjects

know or be able to access (e.g., in textbooks) the requisite principles for problem solving.

4.2 Improving the Efficiency of Problem Solving

'Speedup' learning improves problem-solving efficiency by reusing past experiences. The

simplest form of reuse is to use a previous solution as is. Unfortunately, a particular

solution trace like the one of Figure 2(a) is tailored to only one problem - in this case,

an overtake problems with two trains of 72 and 120 km/hr respectively, leaving three

hours apart. However, we can generalize this solution trace by replacing constants (e.g.,

11
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Figure 2: A specific solution and generalized schema for OVERTAKE.
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72 km/hr) by variables, so that it matches problems other than the one for which it was

first derived. This process of first deriving a solution to a particular problem by search-

ing background knowledge, then generalizing it by appropriately replacing constants by

variables is known as explanation-based generalization or EBG (Mitchell, Keller, & Kedar-

Cabelli, 1986), since a solution trace or proof is regarded as an 'explanation' of the answer.

A generalized solution or schema for overtake problems obtained by this process is shown

in Figure 2(b). In the future, if the problem solver notices that a problem involves 'two

vehicles' moving in the 'same direction' at rates R1 = X and R2 = Y, Y > X, then the

overtake schema can be reused to solve it without searching background knowledge from

scratch.

Unfortunately, even after variablization, the applicability of this schema will be highly

limited. Consider a second opposite-direction problem:

"Two trains leave the same station at the same time. One train travels 6_

km/h to the south and the other travels north at i0/t km/h. In how many

hours will they be 1008 km apart?"

This has a solution structure almost identical in form to the schema of Figure 2(b); it

differs only in the structure of the boxed subtree; rates must be added, not subtracted, to

obtain a relative rate in this latter case. Nonetheless, the earlier solution cannot be used

as is to help solve the new problem. In addition, the overtake schema may be more than

simply useless - it may actually slow future problem solving. This happens because the

solution to the new problem and the schema for the old problem share much in common.

Most problem solvers will require some time examining the old schema before abandoning

it as a viable option. This adds to the time required to solve the new problem. More

generally, if many schemas exist and differ in small ways, then considerable time can be

spent searching unsuccessfully for the correct schema, if it exists at all.

In response, Flann and Dietterich (1989) suggest the utility of generalizing over sev-

eral schemas of the type in Figure 2(b). Figure 3 illustrates the general process; schemas

are superimposed, and subtree structure that is not shared by all the schemas is severed.

Letters represent propositions, which must match across solutions as well. For exam-

ple, generalizing the schemas for opposite-direction and overtake problems yields a tree

structure with the boxed rightmost subtree of Figure 2(b) severed.

The superimposition process results in schemas that can be reused in a wider variety

of situations. Notice that a generalized schema no longer provides the complete solution

structure since some of this has been 'severed', but it ideally provides a sizable chunk

that can be completed by doing a small search of background knowledge. In this case

a problem involving two vehicles with arbitrary rates would signify the relevance of the

generalized schema; background knowledge would only be used to determine how the
relative rate should be determined based on whether actual directions of the vehicles

implied that they were moving in the same or opposite directions.

It is apparent that something like this schema generalization process is required for

effective reuse, but care must be taken in how the procedure is applied. For example,

consider a round-trip problem in which one vehicle goes from point to point at one rate,

and returns at another. In this case, relative rates are not applicable to computing trip

13
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Figure 3: Acquiring generalized schemas by superimposing solutions.

time. Applying the superimposition method to a schenla for round-trip problems and a

schema for either overtake or opposite direction or both, would result in a trivial schema:

T = D/R. Little or no problem-solving advantage is gained by its derivation.

Our examples illustrate some important principles: overspecialized schemas can ac-

tually detract from problem solving efficiency, since many distinct but similar schemas

introduce redundancy into the search for past experiences that are relevant to new situ-

ations. In contrast, overgeneralization results in schemas that are underconstrained and

provide little or no benefit.

4.3 Improving Problem Solving by Concept Learning

Yoo and Fisher (1991b) defined a system called ExoR (EXplanation ORganizer), which

forms an abstraction hierarchy over a stream of problems and their solutions. For in-

stance, in the domain of algebra story problems an abstraction hierarchy over 48 problems

drawn from 12 problem types enumerated by Mayer (1981) is formed like the one shown

in Figure 4. Associated with each node is a generalized schema like those described

previously. The schema at each node is shared by all the schemas stored below it; put

another way, each schema extends its 'parent' schema in a unique way.

4.4 An Example of Problem Solving by Categorization

The advantage of this abstraction hierarchy is that it constrains problem solving search.

Figure 5 illustrates how this process operates on a specific example. In step (1), a problem

statement is presented along with a quantity that must be computed. The problem

statement is compared against the schemas at the first level of the abstraction hierarchy.

In this case, we want to solve for 'time' so a first level node that solves this quantity

is selected (as opposed to 'distance' or 'rate'). The general 'schema' that 'time' can be

solved by dividing 'distance' by 'rate' is asserted as relevant to the current problem,

and this becomes the current hypothesis. In step (2) the schema is specialized further

by categorizing the problem relative to one of the children of the current hypothesis.

We will describe how a child is selected shortly, but suffice it to say that one is chosen,
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Figure 4: An abstraction hierarchy over problem schemas. Adapted from Yoo and Fisher

(1991a, b).

and its schema extends the current hypothesis. This extension to the current hypothesis

becomes the new hypothesis. The specialization process continues in steps (3) and (4),

but in step (4), a contradiction between the surface features of the new problem and the

surface features present in the highly-specific schema is found. In particular, the new

problem involves one car going 'east' and the other going 'west', whereas the specialized

schema requires two cars going 'west'.

Thus, the new problem is incompatible with the hypothesis. This hypothesis is re-

tracted, and one of its siblings is chosen as the current hypothesis in step (5). However,

no extension of schema B will be applicable for this reason, though our problem solver

has no way of knowing this in advance of investigating all of B's specialized schemas.

After all extensions of B are exhausted, a final attempt to complete B's schema using

background knowledge is made, but this will not work for the reasons stated. Thus,

attention returns to B's parent and a sibling of B is chosen as the next hypothesis in

step (6). This hypothesis represents the class of problems with vehicles moving in op-

posite directions; one of its extensions, represented as an existing schema or found by a

search through background knowledge if no appropriate extension has been previously

encountered, will solve the current problem.

4.5 Categorization and Learning

Figure 6(a) generalizes our example; it illustrates that a new problem will be classified

down an 'appropriate' path of the hierarchy. At each node along the categorization path,

the schema associated with the node is asserted as participating in the solution of the

problem being classified. If at any point, a condition known from the problem statement

contradicts one of the conditions asserted at a node, then the partial schema of the node

is retracted, and control returns to the node's parent where another child is investigated.

If all children of a node fail to complete the node's partial schema then an attempt is
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Figure 5: An example of problem solving by categorization.
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Figure 6: Categorization with and storage of problem-solving schemas.

made to complete it by reverting to background knowledge (i.e., the dashed, triangular

nodes of Figure 6). If this fails, then the node fails and control is returned to its parent

as described before. The general categorization procedure is quite simple: inferences

are accumulated as one descends the hierarchy, and each inference is a complex schema

extension that can be retracted and redirected if necessary.

In describing the procedure above, we omitted two important points: how is catego-

rization guided, and how are new schemas added to the categorization tree? To improve

efficiency over a simple search of background knowledge, categorization must be well

directed. An initial strategy guides a problem's classification using the conditions that

are given in the problem statement. These correspond to surface features - e.g., the fact

that a problem involves 'two' (versus 'one') 'cars' (versus 'boats') going 'east' and 'west'

(versus 'north' and 'south'). In cases where surface similarity is correlated with problem

types and solution strategies, some gain in efficiency can be realized. In particular, ExoR

computes category utility over the surface conditions, which provides a degree of match

between a new problem and each node of the categorization hierarchy. The nodes of a

level are ordered by this match score and investigated in order until a complete solution

is found. Notice that to compute this score we need to know the distribution of surface

features among problems that are stored in the hierarchy. Thus, probability distributions

over a subpopulation's surface features are stored at a node, in addition to background

structure that is true of all of a node's descendents.

If a problem is solved by appealing to background knowledge at a particular node,

then the solution is added as a new child (i.e., schema) to the tree at this point. If

an existing schema solves the problem, then no change to the categorization structure

is made, other than to update the probability distribution of surface features at nodes

under which the problem was finally placed. In some cases the new solution is generalized

with existing schemas as well, thus creating new schemas. In the tree of Figure 6(a), the

solution to a new problem would be added as indicated in Figure 6(b). Thus, the system

incrementally clusters problem-solving solutions, and creates generalized schemas in the

process.
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Figure 7: Performance as a function of training. Adapted from Yoo and Fisher (1991a,

b).

4.6 Empirical Results

To test the merits of this problem-solving strategy, 32 training problems were incremen-

tally added to the categorization hierarchy. At intermediate points in training, a separate

set of 16 test problems were solved via categorization with the hierarchy. The average

cost of solving these test problems was measured by the number of features that were

instantiated (matched) during categorization. Roughly, this is the sum of the surface

and background features in all the schemas successfully and unsuccessfully hypothesized

in the course of solving a problem. This measure of cost is well-correlated with the

time required to solve the problem, but it does not depend so strongly on the efficiency

characteristics of a particular computer implementation.

Figure 7 shows the learning curve averaged over 10 random orderings of the 32 training

problems. The declining upper curve illustrates a decrease in the total cost of problem

solving; the darker, increasing curve represents the subset of instantiations performed

just in matching features that are present in nodes of the hierarchy. The difference in the

two curves is the number of instantiations performed using primitive background rules in

an attempt to complete generalized schemas. Thus, total problem-solving effort declines

with training, but an increasing amount of that remaining effort is placed on the growing

categorization hierarchy.

In sum, EXOR builds on the basic COBWEB strategy of top-down categorization

and learning. Each node corresponds to a chunk or schema, which is a partial solution

common to all category members. These problem solving 'chunks' are not used to guide

categorization, but upon making a categorization, are asserted as applicable to a new

problem. Rather, categorization relies on probabilistic distributions over the surface
features.
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4.7 Inferred Features and Pruning

The gains in EXOR's problem-solving performance can be improved in two ways. As we

noted in Section 4.2, overly-specific schemas can detract from problem-solving efficiency.

An example of this is illustrated by schema C of Figure 5. In this case it is not important

that two vehicles are both moving 'west' ior both move 'east', 'north', or 'south'). It

is only important that they are moving in the same direction. Likewise, for opposite-

direction problems it is only important that two vehicles are moving accordingly; the

particular directions do not matter. Such schemas can differ in very small, but nonethe-

less significant ways from novel problems, thus 'misleading' categorization for a large

population of new problems. Therefore, each node of the categorization tree maintains

two counts: a count of the number of times that the node was visited during problem

solving, and the number of problems successfully solved under the node. If the ratio of

successful visits to total visits drops below a threshold (e.g., 0.5), then the node and its

descendents are 'pruned' from the categorization tree. Figure 8(b) illustrates the effect

of this pruning. If all of a node's children are pruned, then an attempt to complete the

node's schema appeals directly to background knowledge.

EXOR's problem-solving efficiency can be further improved by focusing on inferred

features. EXOR categorizes problems based on facts presented in a problem statement,

but recall that Chi et al. (1981) found that 'experts' categorize problems based on prin-

ciples that play an important role in a problem's solution (e.g., problems with solutions

that depend on Newton's third law are categorized together).

As with surface features, useful inferred features are those that are discriminating of

paths that should be followed during categorization. In general, these will be features, Fk,

with high P(C_IF_), relative to a schema category, Ci. The more predictive a feature is of a

particular path or small number of paths, the more efficiently search of the categorization

tree will be directed. For example, as we noted above, surface features indicating that one

car is going 'east' and one car is going 'west' are of little predictive value, but an abstract

feature that is highly predictive of a solution strategy is the fact that the two cars are

moving in 'opposite direction's. However, inference of a feature comes with a cost. Thus,

we wish to weigh the predictiveness of a feature and cost savings in categorization due

to its inference, against the cost that will be required to infer it.
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We formalizethis tradeoff in terms of the expected number of problem-solving steps

(or features instantiated, or any of several other measures of cost) required to solve a

problem with and without knowledge of a feature's truth. Let EC(Ci) be the expected

cost of solving an arbitrary problem beginning at node Ci of an EXOR categorization tree,

EC(Ci[Fk) is the expected cost required to solve the problem if a (derived or surface)

feature Fk is known, and EC(prove Fk) is the expected cost of proving (deriving) the

feature. In the case of surface features, this latter cost is zero. Putting these quantities

together, it is useful to verify a feature at a particular node Ci if

EC(C,) > P(G]C,)[EC(C,[G) + EC(prove Fk)]
+ [1- P(Fk[Ci)][EC(C,[--,Fk)+'EC(prove-',Fk)],

where P(FkICi) is the probability that we will be able to prove the truth of Fk (e.g.,

'opposite-direction') and 1 -P(Fk[Ci) is the probability that its complement (e.g., 'same-

direction') is true, which can also be predictive of a particular course of action. Intuitively,

the more ways there are to infer a feature in background knowledge, the more possibilities

that must be examined, and the greater the cost of inferring it.

EXOR identifies features that are good candidates for inference at each node in the

categorization tree. Having made such identifications, statistics on these cost effective

background features are maintained and exploited in the category utility calculation

that was originally limited to surface features. Yoo and Fisher (1991b) report that

the additional guidance provided by these inferred features, and the pruning method

described above, collectively improves problem-solving efficiency by approximately 12%

over the results of Figure 7.

4.8 Summary

The primary lessons of this work are that inferences are facilitated by categorization;

schemas composed of both surface and background features are inferred and accumulated

into a complete solution as a problem is categorized relative to past experiences. EXOR's

categorization appears consistent with the findings and ideas of Chi et al. (1991), Ross

and Spalding (1991), and others on human categorization; the system infers background

features that guide categorization in problem solving, but surface features are still used

if they are predictive.

Furthermore, the evolutionary process underlying ExoR may also account for other

data on the transition from novice to expert problem solving. Larkin (1981) found that

novices tended to reason 'backward' from the goal, but that experts reasoned forward

from the known facts. This forward-reasoning characteristic among experts was also

found by Koedinger and Anderson (1990) in geometry problem solving. However, exper-

tise in other domains such as design and troubleshooting (or diagnosis) suggests a dom-

inant backward-reasoning component (Perez, 1991). As Larkin suggests, EXOR begins

as a backward reasoner: hypotheses are extended fi'om the goal through categorization

and/or background knowledge search until a solution consistent with the known facts is

found. However, as cost-effective background features are identified they are inferred at

appropriate points in categorization by forward reasoning from the givens. We speculate
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Figure 9: A sample fault tree.

that forward reasoning among experts is dominant in some domains because the top-level

goals themselves are deemed cost-effective background features. This may help explain

the variance of the forward versus background phenomena across domains, and suggests

that in many domains a combination of the two is most appropriate. While psychologists

have uncovered plentiful evidence on the importance of inferred features in categorizing

problem-solving experiences, we know of no work that identifies the criteria that humans

use to select these features. Rather, a starting point in the search for these criteria is

suggested on computational grounds: if humans are bounded-rational agents then they

may select inferred features that are cost-effective - relatively inexpensive to infer and

effective at discriminating relevant past experience.

As a cognitive model, EXOR contributes to our understanding of expert problem

solvers, in areas such as diagnosis and design, where relatively complete and consis-

tent background knowledge is present. Thus, it is relevant to tasks such as diagnosis

of physical systems, where a theory or model of the physical system is present, but the

complexities of these models may overwhelm novice users. Additionally, EXOR appears

to be a reasonable basis for an automated diagnostic system using fault trees (Malasky,

1982), which are a common representation of physical system functionality. An exam-

ple fault tree is shown in Figure 9. This tree is a domain theory that describes the

ways in which a top-level fault reactor shut-down failure can occur. For example,

high-temp alarm failure, auto-discharge failure, controller TIC failure, and

bypass not opened on alarm form a minimal set of conditions (i.e., a cut set) necessary

to cause a top-level fault. Ideally, diagnosis identifies a cut set that explains the top-level

fault. EXOR is well suited to clustering over cut sets and determining in subsequent cases

the cut set which most likely explains the observed fault. While we have not employed

EXOR directly in this task, ideas stemming from its development have led to other work

in diagnosis that we describe in Section 6.
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5 PLOT: Clustering and Reusing Macro-Operators

in Means-Ends Planning

Planning is a critical aspect of intelligence. Traditionally, planning has referred to a delib-

erative process of projecting one's actions onto the world before acting. Computational

complexity stems from coordinating many actions that may interact in nonobvious ways.

The usual strategy for mitigating this complexity is subtasking: a problem is decomposed

into smaller parts, each is solved, and the solutions are weaved into a global plan. Mean-

ends analysis as found in STRIPS (Fikes, Hart, 8z Nilsson, 1972) is an exemplar of this

strategy, in which one uses the goals specified in a problem to delineate subproblems. In

particular, operators for achieving a goal are found, and constrain subplans for achieving

subsequent goals. Failure to find a global plan for a conjunctive goal leads to backtrack-

ing - the exploration of alternative plans with different operators and/or different goal

orderings.

Work in case-based planning takes a very different approach to planning (Hammond,

1989). In response to a new problem, plans are retrieved from a case library that suc-

ceeded under similar conditions in the past. These plans are modified to fit the conditions

of the new situation and executed. Ideally, planning is rendered efficient relative to a

subtasking approach of constructing plans 'from scratch'. Case-based approaches, how-

ever, often lack the ability to plan when the case library is 'incomplete' or new problems

require plans at a considerably different level of complexity as those stored in the case

library.

Ideally, we would like to combine the flexibility of subtasking with the efficiency of

case-based planning (or planning through retrieval and reuse). Steps in this direction

include the identification and reuse of macro-operators, which are composites of more

primitive operators. The composite operators are typically used in a manner similar to

primitive operators, but they take bigger steps towards a solution. Thus, macro-operators

are motivated by a desire for increased efficiency as are CBR approaches, but systems

that learn and reuse macros are not typically able to modify them in a manner that best

exploits their power.

PLOT, combines the benefits of subtasking and case-based approaches by learning,

modifying, and reusing macro-operators. The system's partial use strategy of exploiting

macros is contrasted with more typical full and limited use strategies, which simply

use macros as is. In addition, we show that partial use is most advantageous when

it is coupled with an appropriate selection strategy; the PRE and POST conditions

of the macro must be 'similar' to the task at hand, else modification is unlikely to

improve planning efficiency, and is quite liable to hurt it by expending wasted effort.

To promote retrieval of appropriate macros, PLOT organizes operators into similarity

classes, that collectively form an abstraction hierarchy over operators. We discuss the

general advantages of operator abstraction next, then move to our particular construction

of similarity classes, and our strategy for macro reuse.
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5.1 Abstraction in Planning

In planning, or any search process generally, we can improve efficiency by reducing the

effective depth of search and/or reducing the effective branching factor. As composites,

macro operators take large steps in search, thus promising to reduce effective depth, but

their introduction also adds considerably to the branching factor. In many cases, a reduc-

tion in the effective depth may be outweighed by an increase in effective breadth. These

tradeoffs are similar to those encountered in Exoa, though the mechanisms underlying

the two systems are somewhat different.

Consider a set of operators defined in terms of their preconditions and projected

effects on the environment. Similarity among PRE and POST conditions can confuse a

planner's decision about the 'best' operator to apply under current circumstances. This

leads to a nonoptimal behavior known as the problem-solving fan effect (Shrager, Hogg, &

Huberman, 1987): operators can generally be found most quickly (minimal backtracking)

for problems that are most idiosyncratic, since the relevant operators are more likely to be

idiosyncratic and thus more likely to be deterministically identified as relevant; operators

that are highly similar to other operators are more likely to be sources of confusion for

the planner.

Intuitively, we would like problem solving to be most efficient for the problem's ex-

hibiting the most common patterns! We can achieve this desired result through operator

abstraction. In particular, by abstracting over operators we expose the problem solver

to 'abstract operators' that are relatively distinct so that an unambiguous decision as to

the correct abstract operator can be made at each level of the hierarchy.

If we assume that the hierarchy is such that at each level a 'correct' operator is selected

deterministically, and that each node contains n (abstract) operators as children, and that

there are T leaves (i.e., executable operators), then we can show formally (Yang, 1992)

that the number of operators that need be inspected is reduced from O(T) (with no

abstraction) to O(ln T) for appropriate n at each planning step.

The analysis that leads to this result is related to and inspired by similar analyses

(Korf, 1897; Knoblock, 1990) concerned with decreasing effective depth by searching in

state abstraction spaces. Here we are not concerned with such a search, but only in

the selection of appropriate executable operators at each step in a search through the

original state space by exploiting an operator abstraction hierarchy. The effect is to

reduce effective branching and to mitigate the problem solving fan effect. The critical

assumption if we are to approximate the best case behavior indicated by the analysis is

that we can deterministically traverse the abstract operator hierarchy from the root to

an appropriate leaf. In general, this is not possible, thus backtracking is still required,

though the hierarchy can guide the selection of alternatives, as was the case with EXOR.

In any case, operators must be organized by some similarity metric that facilitates near-

deterministic traversal.

5.2 Operator Similarity Classes

In traditional means-ends problem solving the problem solver finds operators that most

reduce the differences between the current conditions and goal state. In STRIPS, this
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Figure 10: An abstract operator definition.

idea is implemented as a search for operators with ADD conditions that match the goal.

Intuitively, we would like more than this: operators should both achieve unsatisfied goals

and possess preconditions that best match the current state, thus reducing the need

for backward chaining on the preconditions of the selected operator. Operator similarity

classes are formed by clustering the operator definitions using a measure of match between

operator PRE and ADD conditions. The particular clustering strategy that is used is

based on Fisher's (1987) COBWEB, which forms a categorization hierarchy of operator

similarity classes.

Each abstract operator discovered through clustering is probabilistically defined. Fig-

ure 10 illustrates an abstract operator definition over two primitive operators. The op-

erator definition is represented at three levels: by the PRE, ADD, and DEL lists, by the

predicates occurring in each list, and by the arguments to each predicate. Frequency

counts of the number of occurrences over class members for each predicate and for each

argument are stored. In addition, the number of members (i.e., primitive operators) are

stored with the abstract operator. Intuitively, we wish to group operators that agree

on many dimensions - their predicates within each llst and their arguments to each

predicate.

The quality of a class or abstract operator is defined by

P(class) x _"_Liste(PRE,.4DD) }-_-predeList(class)_-_-parEprecl

[P(par = vallclass) 2 - P(par = val) 2]

This measure guides the search for meaningful operator classes. Intuitively, an ab-

stract operator is good if it is likely to be applicable (i.e., reflected in P(class)), and it

is likely to be useful, which is reflected by the triple sum. This latter term quantifies

usefulness as our certainty in the truth and appropriateness of predicates and parameters

of PRE and ADD conditions, respectively, at the time of operator selection. We will not

delve into the measure beyond this, but note that it is a function of both PRE and ADD
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Figure 11: An abstraction hierarchy over STRIPS operators in the robot planning domain.

conditions, and that it separates operators into classes of high within-category similarity

and low between-category similarity. The best partitioning of operators into classes is

determined, and the procedure is recursively applied to each class, thus generating an

abstraction hierarchy with primitive operators at the leaves.

Figure 11 illustrates an operator abstraction hierarchy over the eight STRIPS operators

of the robot planning domain. We do not include the full probabilistic definition of each

abstract operator, but only those conditions that are common to all members of the class

(i.e., those that occur with probability 1.0). A final relevant aspect of this clustering

procedure is that it is incremental. The measure used to construct the initial hierarchy

can guide categorization and placement of new operators. This is an important feature,

if new macro operators are to be learned and stored for reuse.

The operator abstraction hierarchy is used in planning by treating the problem state-

ment as a hypothetical operator definition; the initial state serves as a PRE list, and

the conjunctive goal serves as an ADD list. Intuitively, the leaf of the hierarchy found

through categorization is an actual operator that best matches the 'hypothetical' opera-

tor that will solve the problem. This actual operator is retrieved for means ends planning.

The categorization path is remembered, and can guide backtracking, if necessary.

5.3 Learning Macro Operators

As new problems are solved the planner has the opportunity to store macros for future use.

In particular, the system analyzes a successful planning tree - a binary tree in which each

node is an operator, the left subtree is composed of operators that achieve unsatisfied

preconditions of the node, and the right subtree contains operators that achieve the

remaining unachleved goals of the node's parent task. PLOT packages together operators

that collectively achieve one goal. In particular, every node and its entire left subtree

(i.e., its support) are used to construct a macro operator. The rationale for this packaging
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Figure 12: Packaging macros from a planning tree.

strategy is that it yields macros that can be applied independently to achieve a top-level

goal, regardless of the conjunctive goal in which this goal appears. Successful operator

orderings (i.e., sensitive to goal interactions) for achieving the conjunctive goal which

constitutes the preconditions of a node are still retained as the left subtree of that node.

Figure 12 illustrates the macros that are formed from a general planning tree.

Having packaged a macro, we wish to place it into the operator hierarchy, so that it

can be retrieved and reused under appropriate circumstances by the means ends planner.

To do this we must construct PRE, ADD, and DEL lists for the macro. PLOT considers

the linear order of the operators obtained by an inorder traversal of the appropriate plan

subtree. We then initializes the PRE, ADD, and DEL lists of the macro as follows:

PRE1 = PRE(Opl)

ADD_ = ADD(Opl)

DELl = DEL(Opl)

PLOT iteratively analyzes each subsequent operator and updates the macro lists at

the ruth operator so that

PREm = PREm_I U [PRE(Opm) - ADDm_I]

ADDm = ADD(Opm) U [ADD,___ - DEL(Op_)]

DELta = DEL(Opm) U[DELm__ - ADD(Opt)]

Intuitively, preconditions of a macro are the preconditions of each operator that are

not achieved by ADD conditions of preceding operators. Similar intuitions apply for the

ADD and DEL lists. The macro and its planning subtree are stored in the operator

hierarchy based on their similarity to existing classes along the PRE and ADD lists.

5.4 Planning with Partial Use of Macro Operators

As operators are incorporated into the abstraction hierarchy they can be retrieved and

reused in the same manner as primitive operators. This straightforward strategy is known
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as full use of macro-operators. Unfortunately, full use has some problems. For example,

if a macro operator of going through 15 consecutive rooms with all doors open is used

to solve a very similar problem of going through the same 15 rooms with the second-to-

last door closed, it is unacceptable to let the Robot go through these rooms, open the

door, and return, just so that we can reuse the macro. This has motivated a limited

use strategy (Mooney, 1989), in which macros are only used if they completely solve a

given subproblem - no backward chaining on the macro's preconditions is allowed. This

eliminates the problems associated with full use, but its extreme stance does not exploit

macros in many situations where they might be useful with some slight modification.

5.4.1 Partial Use of Macro Operators

We propose a partial-use strategy. If all preconditions of a macro are satisfied by the

current state then it is used as in limited use. If some preconditions are unsatisfied then

instead of initially backward chaining on its unsatisfied preconditions as in full use, or

discarding it as in limited use, the planner examines each operator within the macro-

operator, and adds and/or deletes certain operators to make the macro workable for the

given problem.

This modification process is initiated by restoring the planning tree stored with the

macro and considering its root. If the root operator does not achieve any of the desired

current goals (i.e., it is useless), or it achieves goals that are already satisfied in the current

state (i.e., it is redundant), then it is removed, otherwise it is kept since it achieves an

unsatisfied goal (i.e., it is useful). If the root is kept, then analysis moves to its left

subtree to see whether operators stored here achieve the necessary preconditions. This

analysis process is recursive, in that operators of the left subtree are evaluated relative

to their parents preconditions. If an operator at a node is a primitive operator, then

examination of its ADD list determines whether it achieves any of its parent's unsatisfied

preconditions and it is removed or retained accordingly. However, if a node is a macro

operator itself, and it is useful, then it is recursively evaluated by partial use to make it

workable under current conditions.

After examining the left subtree of a node, if there are no remaining unsatisfied pre-

conditions of the node's parent task, then the right subtree of the node is truncated,

since its operators are no longer needed to achieve any parent preconditions. If parent

preconditions do remain unsatisfied, then the node's right subtree is recursively evalu-

ated; if no right subtree exists, then the means-ends planner is called to add additional

operators to achieve remaining parent preconditions.

If at any point in recursive analysis, an operator is deleted, then its right-subtree is

promoted as the root, since the right subtree was originally included to achieve remaining

goals of the parent task; the assumption is that it is more likely to obtain such parent

goals in the current context. If a right subtree is empty, as is the case when we are

examining the root of an entire macro, then the left subtree is promoted. Figure 13

illustrates this process.
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Figure 13: Operator deletion.

5.4.2 Related Work

STRIPS can edit a macro to better fit current planning requirements. However, STRIPS

particular strategy of using triangle tables may only delete operators. STRIPS applies a

full use strategy plus deletion. In contrast, we retain the planning tree so that operators

may be added by recursive application of the planning module in an appropriate way.
Partial use is also similar to the kinds of modifications that can occur in CBR and

its ancestors such as HACKER (Sussman, 1975). Deficiencies in a plan (or macro) can

be remedied by searching its case library (or answer library in the case of HACKER) for

other macros or parts thereof that can patch the deficiency. We view these systems as

performing a kind of limited use with the possibility of hard-coded additions. In contrast,

partial use exploits the full power of the means-ends planner to patch a macro. Note

that the planner can retrieve other macro operators in this process, and thus need not

build the patch from scratch.

Allen and Langley (1989) and Anderson and Farley (1988) also form operator hierar-

chies, but neither stores and reuses macro operators.

5.4.3 Selection by Similarity and Partial Use

Intuitively, it is important that partial use be used in conjunction with an operator

selection strategy that returns (macro) operators that are similar to current conditions

and goals, else considerable effort may be wasted. As previous sections indicate, selection

by similarity is the strategy that we use. However, other selection strategies have been

proposed. One strategy is to examine macro operators in the order in which they were

constructed, since macros discovered early are more likely to apply to more common

classes of problems - an observation that is true, if a problem population is sampled

randomly. A second strategy is to examine macros by size; focusing on the largest

macros first may bring about the largest gains in problem solving.
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Figure 14: Performance of the learning planner.

5.4.4 Experimental Results

To evaluate similarity-based selection and partial use, we examined 60 artificially-constructed

robot planning problems. Problems were ordered by the length of the plan required to

solve the problem - i.e., the planner was trained from 'easiest' to 'hardest' problems. The

planner accumulated and added macros during training. Intermittently, we tested the

planner on the full set of 60 problems with learning 'turned off'. Figure 14 illustrates the

performance of our planner, a traditional means-ends planner, a planner endowed with

an abstraction hierarchy over the primitive operators but no macro learning ability, and

an important variation to our planner. The notable phenomena are that simply employ-

ing an abstraction hierarchy over the primitive operators does well (_ 220 unifications)

relative to a traditional planner (616 unifications). In addition, partial use of acquired

macro operators improves performance for a time (to 129 unifications), but performance

degrades after many macros are added to the hierarchy. The basic reason is that proba-

bilistic class definitions become less distinct as more operators are added, thus confusing

similarity-based selection. There are many possible fixes to mitigate this, including other

categorization structures, but we have implemented a simple strategy of pruning macro

operators that are either infrequently used and/or generally incorrect as measured by a

simple product of these factors. Macro operators that are evaluated as falling below a

threshold of acceptable performance are removed. This strategy significantly mitigates

the utility problem (Minton, 1988), and appears fairly robust across a range of thresholds.

Applying this pruning strategy at the point indicated, served to remove 24 macro

operators, reducing the set of operators in the hierarchy from 41 to 17 (8 primitives

and 9 macros). This led to an increase in performance over the the problem set (116

unifications).

Our real goal here is to evaluate the utility of partial use. In particular, we examine

partial use with various operator selection strategies. The bar graph of Figure 15 illus-

trates partial use performance when used in conjunction with selection strategies based

on macro operator operator size, learning order, and similarity. This is a snapshot of
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Figure 15: Performance of partial use.

planner performance at the point where 19 operators are stored in the hierarchy. Perfor-

mance indicates that partial use only makes sense when we select based on similarity.

Figure 15 indicates the relative merits of partial use with various selection strategies.

Figure 16 evaluates limited use in the same way. In this case, similarity-based ordering

of macros is still preferred, in part, because it prefers operators with preconditions that

match current conditions, as well as the desired goal conditions. However, comparisons

across graphs indicate that limited use is also advantageous in conjunction with selection

based on learning order. Finally, we note that similar experiments were performed with

a full use strategy, which does very poorly regardless of operator selection strategy.

5.5 Summary

In sum, PLOT introduces the idea of similarlty-based retrieval and partial use of macro

operators. These selection and use strategies are compatible, and best applied in con-

junction. Both ideas stem from work in CBR, but our goal was to integrate them into

a traditional means-ends planner, which retained the flexibility to solve new and novel

problems, and to patch deficiences in macros through subtasking, as well as by using por-

tions of other macros. A secondary idea is that operator selection should be guided both

by conditions that an operator can achieve so that forward progress can be made, and

by the match between the preconditions and current state, thus minimizing backward

chaining on the preconditions of the selecteci operator.

6 Cluster-Analytic Approaches to Diagnosis

Accurate and timely fault diagnosis is critical in the life cycle of many physical systems.

Seemingly minor faults can, if unremedied, lead to catastrophic faults that disable a
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system permanently. To detect faults, technicians observe the system's behavior through

sensor readings. Sensors should be maximally informative about the state of the system.

However, in many cases it is neither feasible nor desirable to monitor all quantities of

a system. Thus, the diagnostician interfaces with the system in other ways, including

probing. One can think of probing as sensing a quantity dynamically to determine its

value at a particular point in time. In general, we wish to minimize probing by judiciously

selecting the 'most informative' probes throughout diagnosis.

Diagnostic procedures can be judged by their efficiency. This section forwards two

ideas.

[1] Methods of machine induction can be used to identify system parameters that are

good candidates for dynamic probing and continuous sensing over a population of

diagnostic episodes.

[2] More specifically, inductive methods of clustering can identify similarity classes of

system behavior in terms of observable system quantities. These similarity classes

can be exploited to minimize the cost of probing during fault isolation.

Section 6.1 discusses the relationship between traditional methods of candidate gener-

ation (DeKleer, 1991) and machine induction, notably of decision trees (Quinlan, 1986).

Section 6.3 discusses the weaknesses of the decision tree approach, and motivates an

alternative that clusters behaviors that are similar in terms of observable parameter val-

ues; each behavior cluster is represented by a probabilistic summary of parameter values

that are common to and that discriminate the class from contrast clusters. Our par-

ticular approach is contrasted with a similarly-motivated approach by Wu (1990, 1991).

Section 6.5 discusses the manner in which discovered similarity classes are exploited for

diagnosis. In particular, probabilistic summaries of behavior classes efficiently indicate
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diagnostic probes that best discriminate among members of the class, thus focusing the

diagnostic process.

6.1 Model-Based Diagnosis and Induction of Decision Trees

DeKleer (1991) and others describe model-based diagnosis as roughly the following:

Step 1: Generate candidate diagnoses consistent with system outputs.

(a): Note discrepancies between known system outputs, and those anticipated con-

ditioned on system inputs.

(b): Explain how each (anticipated or unanticipated) output might arise in terms

of the correct or incorrect functioning of individual system components and

combinations of components. This analysis produces 'conflict sets' that offer

differing explanations for each output.

(c): Combine the conflict sets into 'candidates' (i.e., the cross product of the con-

flict sets).

(d): Retain those candidates, which explain all of the known system outputs con-

ditioned on system inputs, and that are internally consistent.

Step 2: Select probes that discriminate candidates until an unambiguous candidate is
isolated.

(a): If only one candidate (or 'sumciently' small number) are consist:ent with known

system values (initially outputs), then STOP and return the (ideally singleton)

candidate set.

(b): Make the most discriminating probe according to an information-theoretic

measure - i.e., that probe with possible values or outcomes that best discrim-

inates the remaining candidates.

(c)" Eliminate those candidates that are inconsistent with the value obtained by

the probe.

(d): GOTO Step 2(a).

Step 2 can be viewed as tracing out a 'decision path' that discriminates the true

diagnosis from possibilities initially created by candidate generation in Step 1. Initial

candidates are conditioned on known system input and output values, and subsequently

known values obtained through probing restrict diagnosis to increasingly more specific

candidate classes. This methodology presumes that a model of the system can be simu-

lated on particular inputs so that other system-wide values can be computed.

Intuitively, we wish to select probes in an order that minimizes the expected cost of

diagnosis. DeKleer (1991) approximates the expected cost of isolating one candidate from

a set of possibilities, C, conditioned on prior known system values, V, by an information-

theoretic measure. In the case where probes are of uniform cost and each probe is
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binary-valued (e.g., expected, unexpected),the expected number of stepsto isolate a
candidateconditionedon a probe'sselectionis:

EC(C[V) _ - _ P(t, = v,j]V) __, P(cklt, = v,j A V)log 2 P(cklt, = v,j A V).
vii c_,

This measure is used to guide the expansion of the decision path through probe selection.

Those probes that most reduce uncertainty about the true diagnosis (i.e., candidate) are

selected at each step.

Importantly, diagnosis based on candidate generation is a data driven process; each

probe selection further specializes a data set of candidate causes (and their projected ef-

fects on system parameters) that was initially constructed via simulation to be consistent

with initially observed outputs. This strategy can be approximated and rendered more

efficient by induction over a population of diagnostic episodes, where the population is

assumed to be representative, and the knowledge structures constructed through induc-

tion mitigate the need for candidate generation on a problem-specific basis. Decision tree

induction is one of the simplest and most straightforward in terms of its relation to the

candidate generation strategy outlined above.

In diagnosis we can view faults as labeling classes of observations that need be distin-

guished. System outputs and other values obtainable through probing form the feature
set over which faults can be discriminated. To build a useful decision tree requires that

we select discriminating probes in a rational way - that is, by the extent to which the val-

ues of the feature increase certainty about category membership (Quinlan, 1986). In the

case of diagnosis, the form of the evaluation function typically used is a simple extension

of that which we gave earlier for probe selection:

P(t, = vijlV) _-_[P(cklt, = vii A V)log 2 P(cklti = v,3 A V) - P(c_lV ) log 2 P(cklV)].
vii Ck

Since P(cdV ) log 2 P(ck]V) is constant across all ti, maximizing the measure above is

equivalent to minimizing the expected cost approximation given earlier:

- _ P(I, = v,,lV)l_-_[P(cklt_ = v,j A V) log_ P(cklt, = v,j A V).
vi 3 ck

Intuitively, the decision tree represents a composition of decision paths that would

be expanded for differing problems using a candidate generation approach. However,

like decision paths of the candidate generation algorithm, the decision tree must be

constructed from some initially generated 'data' or candidates. The primary differences

are that observations across a representative set of I/O vectors must be obtained, but once

generated the tree serves as associative knowledge that mitigates (but may not entirely

eliminate) the need to generate candidates for problems encountered in the future.

6.2 Decision Tree Induction over Space Station Model Behav-

iors

Carries and Fisher (1992) have used a decision tree induction system, C4.5 (Qulnlan,

1987), to discover categories of fault conditions over system simulations. This work has
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Figure 17: A thermal model.

proceeded with a simplified model of part of the life-support system of Space Station

Freedom. In particular, consider a model of a thermal system given in Figure 17. Carnes

and Fisher used the following strategy to generate data and to learn rules that distinguish

a variety of conditions that can cause anomalous behavior in this system.

[1] System designers specify a simulator that represents each major system component

as a function that maps component inputs to outputs. Simulation using a model-

based methodology begins with an initial state of system parameter settings and

propagates parameter changes through component functions until the simulator

converges on a stable state.

[2] Associated with each system component are permissible parameter ranges, within

which the component is assumed to operate satisfactorily. Initial simulator param-

eters are systematically perturbed beyond extreme ends of these ranges for each

component, thus yielding conditions under which the system is liable to malfunc-

tion.

[3] Each condition set generated in step [2] is propagated through the system until a

stable (or some error) condition is reached.

[4] The gystem state descriptions of all simulations (i.e., composed from observable sys-

tem parameters) that lead to anomalous behavior are collected together, labeled

by the perturbation that initiated the anomaly, and passed to C4.5.

[5] The learning system forms a decision tree that distinguishes anomalous behaviors

that were caused by different parameter perturbations.

The decision tree formed in Step ,5 implicitly groups fault modes based on similar val-

ues along the selected system parameters. In total there were 87 fault types. In addition,
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Figure 18: A decision tree over anomalous behaviors.

three versions of each perturbation type were generated, corresponding to cases where the

selected parameter value was perturbed just above (or below) acceptable ranges, moder-

ately out of range, and far out of range. Intuitively, these corresponded to conditions of

high (low), very high (low), and very, very high (low) values, but each case was labeled

by a single fault (e.g., the parameter was 'above acceptable range'). Thus, the decision

tree had to distinguish 87 _faults', represented over 261 observations (snapshots). Each

snapshot was represented by 23 system parameter values.
C4.5 constructed decision trees much like the one partially shown in Figure 18. The

decision tree is a highly efficient and conceptually-simple classifier, which identifies can-

didate causes accurately to the extent that the training population is representative of

behaviors that will be experienced during system operations. However, a decision tree

has some notable limitations for diagnostic applications. First, the tree is very sensitive

to noise in sensed or probed system values: each test value implicitly defines a candidate

class - a single misleading value can lead diagnosis considerably astray by suggesting the

wrong candidate class. One implication is that uncertainty in a domain may insist on

some redundancy in the probed values to protect against noise. In addition, the tree

is designed to yield diagnosis of low expected cost over a population of problems (i.e.,

observations and underlying faults). However, individual problems may come with dif-

fering observed system values initially - values that do not occur near the root of the tree

where diagnosis begins; this may necessitate unnecessary redundancy in probing system

parameters at the root.

6.3 A Cluster-Analytic Approach to Diagnosis

Traditionally, probe selection is determined by the extent that the probe's possible out-

comes minimize uncertainty about which candidate is causing faulty behavior. An alter-

native view of diagnosis forwarded by Wu (1990, 1991) is that diagnosis should minimize
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uncertaintyabout the stateof systemparameters.Diagnosisis the processof determining
a system'sparametervector with somedegreeof certainty. A reasonablestrategy in such
casesis to discoverbehaviorcategoriesexhibiting relatively low uncertainty in observable
parameters. This section describesan inductive clustering approach that naturally fits

the view of diagnosis as identifying a (probabilistic) system state vector.

A clustering system constructs a classification scheme over a set of observations. We

have used an extension of Fisher's (1987) COBWEB system. As we noted in introducing

COBWEB, it is every clustering system relies on a criterion of cluster quality. The basis

for a criterion function might be Wu's notion of explanatory power. Wu suggests that the

expected ability of a target disorder to explain an arbitrary set of observed symptoms

can be estimated as the proportion of (total) symptoms that are caused with nonzero

probability by the disorder. More generally, we are interested in using some measure of

explanatory power of a cluster of 'disorders' or behaviors to explain the observed 'symp-

toms' or parameter values of a system. This measure can then be used to discover clusters

that 'explain' or predict the observed parameter values of a system during operation.

We previously noted that COBWEB uses a measure of cluster explanatory power

known as category utility (Gluck &,"Cotter, 1985). We repeat this for the reader's conve-

nience.

CU(Ck) = P(Ck)[}--_ _ P(ti = v,j[C_.) log 2 P(ti = vii]Ck) - P(ti = vii)log2 P(ti = vli)l,
i i

which rewards clusters, Ck, that most decrease the uncertainty in system parameter value

distributions. An alternative measure (Gluck & Corter, 1985) which we have used is

CU(Ck) = P(Ck)[}--_ X: P(ti = vijlck) 2 - P(t, = vli)2].
i j

These measures heuristically rank the quality of clusters in an almost identical manner.

In either form, category utility is a more sophisticated measure of explanatory power

than Wu's. Notably, category utility considers the absence of a 'symptom' as possibly

diagnostic as well as its presence. More generally, a probe or sensor may have one of

many possible values, and category utility is a function of the probability distribution

over all possible probe values. Whereas, Wu was interested in demonstrating the ezis-

tence of connections between target disorders and symptoms, for which his explanatory

power measure was adequate, we are interested in discovering and exploiting probabilistic

connections between disorders and symptoms in a manner that yields an approximately

optimal organization of disorders into categories for purposes of diagnosis.

The category utility expression above is appropriate for nominally-valued (i.e., dis-

crete, unordered, finite) attributes, but several variations on this basic scheme have been

adapted to handle observations described over continuously-valued attributes as well.

We have adopted COBWEB/3 (McKusick & Thompson, 1990), which handles continuous

dimensions by seeking clusters that most reduce the standard deviation over continuous

parameter values. In particular, terms over continuous attributes are computed as

1 1

O'ik IT i
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, T

where crik is the standard deviation over the values of parameter value i at cluster Ck,

and ai is the standard deviation of the same parameter value at its parent.

Category utility is used recursively, first to build a partition over the entire population

of observations, and then to subpartition each of these initially-constructed clusters, thus

yielding a categorization hierarchy. Each category in this hierarchy is represented by the

proportion of behaviors classified in the category (i.e., which approximates the probability

of classifying future observations into this category), and the probabilistic distribution

of test values exhibited among members of the category. Our particular interest in this

process is its ability to discover clusters over snapshots or instantaneous descriptions of

system simulations.

6.4 Clustering over Space Station Model Behaviors

We have used COBWEB to discover categories of fault conditions over system simula-

tions. This proceeds in much the same way as the simulation/induction procedure of

Section 6.1, except that in Step (4), the snapshots are passed to COBWEB/3 rather than

C4.5. An example of a categorization tree of discovered fault modes for the thermal

system is partially shown in Figure 19. Each datum consists of inputs and outputs, for

all components, including the single perturbed value (as described in step 2); that is,

each datum is a snapshot of the system. We do not show the probability distributions

over all attribute values for clusters, but simply label each low-level node by a descrip-

tor that conveys the fault-mode meaning. These labels correspond to the perturbation
that initiated each simulation and resulted in an anomalous behavior, as described in

Section 6.1.

The benefits of clustering are at least two-fold. First, it is difficult for engineers to

completely design against system faults in advance. Collectively, simulation and cluster-

ing identify fault models that benefit design decision making by identifying 'new' faults

for the designer and by indicating that known faults may appear quite similar, and thus

easily confused if appropriate discriminating sensors are not used. For example, low flow

through the radiator and a malfunction to the heater both result in high water temper-

atures, despite the fact that this behavior emerges for very different reasons. Similarly,

high flow through the pump appears somewhat similar to a second heater malfunction:

both result in low water temperatures.

Second, like C4.5, a COBWEB classification tree can facilitate fault diagnosis. In

particular, categories discovered through clustering associate observable/sensor/probe

values with component faults that lead to the observed anomalies. We can classify an

observable set of parameter values down a path of _best matching' nodes to a point

that corresponds to an identifiable operating mode. Initially, an entire system snapshot

consisting of all parameter values is tentatively placed in each child (cluster) of the root

node of the hierarchical clustering. The average category utility, _[CU(C.)N , is computed

for the partition that would result from this placement. The child which yields the best

category utility score after this tentative placement is selected to classify the snapshot.

Intuitively, categorization proceeds by computing the 'match' between the parameter

values of a particular observation and the probability distribution over parameter values
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Figure 19: A partial classification tree of fault modes for the thermal model.
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Table 1: Saliencescoresfor a behavior cluster.

USER(14): (print-class-lnfo 'n49)

Node - N49

Parent: g30 Childrent (HEATER-I-TEMP-NOM-45.67 N53)

Attribute LAst (partia! order):

RAD-TEMP VI-TEMP

TANK-TEMP V2-TEMP

V2-FLOW RAD-FLOW

TANK-FLOW VI-FLOW

VI-PKES PUMP-PRES

V2-POS COMMENT

RAD-POWER TIME

Salience LAst (partial order):
1.025914 0.988109

0.988109 0.915097

0.596295 0.596295

0.405532 0.405532

0.107379 0.107379

0.000000 0.000000

0.000000 0.000000

PUMP-TEMP

HEAT-TEMP

PUMP-FLOW HEAT-FLOW

V2 -.DRES KAD-PKES

HEAT-PRES TANK-_RES

COMPONENT HEAT-_OWER

PUMP-POWER VI-_OS

0 988109

0 900949

0 542278

0 222549

0 107379

0 000000

0 000000

0.542278

0.222549

0.107378

0.000000

0.000000

at each node. The node with parameter value distributions that are best 'reinforced' by

the new observation is selected to classify it. This categorization decision is then applied

recursively at this 'best' matching node, until a leaf in the hierarchy is reached. When a

leaf node is reached, the label (identifying the perturbed parameter value, and direction

of the perturbation), which is attached to the behavior at the leaf is used as the predicted

'cause' of the behavior being categorized.

6.5 Attention Focusing in Space Station Model Diagnosis

To classify an observation in COBWEB requires knowledge of all parameter values. In

diagnosis, this amounts to probing each value and obtaining a result. In some cases this

could lead to a significant number of probes (e.g., in our domain example from Section 2).

In contrast, we would like to classify an object or event in as few probes as possible. One

way in which we accomplish this is to examine the salience of each feature, calculating

what amounts to a category utility for each feature within the scope of its parent node.

Thus, a continuously-valued parameter has a salience of:

N

Intuitively, parameters with larger salience contribute more to the category determination

and more greatly influence the placement of an observation. Highly salient parameters

serve to focus attention, and limit the number of parameters that actually need be probed

during categorization. Table 1 illustrates the salience scores for the parameters used to

describe behaviors at one node in the behavior tree.

The general philosophy behind a focusing method (Cennari, 1989) is that we wish

to properly categorize a behavior by probing a miaimal number of parameters. The

general method is shown in Table 2. Categorizatlon/diagnosis begins at the root of the

categorization tree. The salience of all parameters is computed, and the parameter with

highest salience is selected. The category utility measure is computed over the known
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Table 2: Algorithm for Developing Salience List.

Algorithm: Attention[]

[step 1] Compute the salience of all parameters;
store these scores at the root.

[step 2] Select an unprobed parameter with greatest salience.

[step 3] Find the best matching cluster by computing

category utility only over the probed parameter values.

[step 4] Consider the probed parameters at the root;
does the sum of salien.ce over these parameters surpass

a threshold?

[step 51 If no, then goto [step 2],

else ignore remaining parameters and categorize the

behavior into the 'best' matching host over the parameters

sampled thus far. Go to step 1.

parameters, and the cluster that best matches the behavior is identified. If the total

salience of selected parameters surpasses some threshold then the best cluster identified is

selected to further categorize the behavior. In our experiments, we required that this sum

of saliences was at least 1/3 the total salience sum over all parameters at the root. This

heuristic strategy is prone to error, but intuitively captures the idea that a sufficient body

of evidence has been accumulated on which to categorize the behavior. Once selected,

the best cluster is treated as the root, and the salience scores are recomputed within this

cluster's subpopulation of behaviors; subsequent parameter selection and categorization

continues at this level of the tree. This process continues until a leaf is reached, at which

point the parameter perturbation labeling this leaf is predicted as the perturbation that

led to the behavior being classified.

To test the cluster-analytic approach to diagnosis, we performed 5 learning trials,

in which a categorization tree was constructed over 400 training behaviors generated as

described in Section 6.1. In addition, 100 randomly generated behaviors were categorized

relative to the learned behavior tree. As Table 3 illustrates, testing with focusing yields

slightly less average accuracy, but there is a large reduction in the number of parameters

that need be probed. In general, the focusing algorithm as currently implemented with

threshold, limits the number of probes that can be made, but in this domain, the small

number appears sufficient for accurate diagnosis in this domain.

Table 3: Test results for COBWEB without and with focusing.

clustering

system

accuracy

(average)

parameters evaluated

(average)

without Focusing 92.5 25.0

with Focusing 90.4 6.1

In model-based strategies such as candidate generation, the data is rendered explicit

through candidate generation on a problem-specific basis. In this case, the reasonableness
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of an inductive, data-driven processovera problem population to mitigate the needfor
repeatedcandidategeneration is clear. In addition, inductive learning methodscan be
applied when no explicit model of the systemexists at all, but observationsof system
behaviorcan be usedas data for an inductive engine(Manganaris,Fisher, & Kulkarni,
1993).We describethis work next.

6.6 Discovering and Exploiting Operating Modes in the Space
Shuttle RCS

The Reaction Control System (RCS) of the Space Shuttle provides propulsive forces

from a set of jets to control the motion of the Shuttle (pitch, yaw, roll). It replaces the

aerodynamic surfaces, which become ineffective in the upper atmosphere. The RCS is

located in three different areas of the orbiter. The forward RCS module is in the forward

fuselage nose area. The aft (right and left) RCS modules are located in the right and

left RCS pods, which are attached to the aft fuselage. Each RCS has two subsystems.

One for each propellant: Oxidizer (OX) and Fuel (FU). The OX and FU subsystems are

very similar in construction. Each consists of a Helium system, a propellant system (OX

or FU), cross-feed and interconnect capabilities, and a jet thruster system. The helium

system is used to pressurize the propellant and drive it to the jets. It consists of a Helium

tank storing helium under high pressure, two legs in parallel, of two pressure regulators

in series, each controlled by a valve. The propellant system consists of a propellant tank

and an isolation valve at its output. The jet system consists of a manifold (pipes and

valves), and jets. A FU and an OX pipe goes to each jet. A jet fires when OX and FU
are allowed contact in its chamber.

Many quantities of the system are transmitted back to earth via a telemetry link.

Each RCS has two He pressure sensors at the He tank, one temperature sensor at the He

tank, one pressure sensor for the ullage pressure in the propellant tank, one temperature

sensor at the propellant tank, and one pressure sensor at the output of the propellant

tank. In addition, every valve's position is transmitted as sensed (talk-back) and every

command affecting a valve is also transmitted.

Induction for diagnosis of the RCS was initiated by Stefanos Manganaris while vis-

iting NASA Ames in Summer, 1992. This project also involves clustering and other

forms of inductive learning, but requires attention to time-dependent, telemetry data. In

particular, incoming data must be incrementally interpreted to verify expected changes

in the operating mode of the RCS (e.g., jets on a predetermined point) or unexpected

changes due to faults. The primary hurdle in developing such an automated system is the

identification of operating modes from time series data. For example, proper functioning

of jets cannot be determined from a single snapshot of RCS parameter (e.g., pressure)

values, but only from trends of these parameters observed over time (e.g., decreasing

pressure).

Over a set of training data, our method (Manganaris, Fisher, & Kulkarni, 1993) seg-

ments the values of each continuous variable, then fits an equation to each segment (i.e.,

the variable's values over a time interval). Each equation or variable model summarizes

the variable's behavior over the time interval by features such as its mean, slope, and
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Figure 20: A Hierarchyof BehaviorClassesCorrespondingto RCS's Operating Modes

acceleration.Thesetrend summariesare then passedto COBWEB/3for analysis.
Initial results using COBWEB/3 indicate that trends are well partitioned into cate-

goriesthat reflect known (faulty or correct) operating modes.In particular, wehaverun
severalexperimentsusing RCS data. Twelve quantities weremonitored in addition to
the discretecommandsand talk-back for detecting configurationchanges.Behaviorsum-
mariesin this experimentconsistof the two parametersof the best fitting linear approx-

imation models (i.e., slope and intercept) and the squares of the correlation coefficient

for each of the twelve quantities. RCS behavior in each interval is thus characterized

by thirty-six (3 x 12) numerical attributes. Noisy data, from several minutes of RCS

operation and under various conditions, were processed to generate fifty-six behavior

summaries.

Figure 20 shows a typical hierarchy of classes formed by COBWEB/3. The leaf nodes

correspond to individual behavior summaries. They were manually labeled according to

the configuration of the RCS in the corresponding interval, for testing the accuracy of

predictions. The operating modes of the RCS we have studied can be roughly classified

into four categories: normal, with the jets on or off, and abnormal, with a failed pressure

regulator and the jets either on or off. The labels were not used for inducing the classes.

Node N9 corresponds to the class of behaviors when a pressure regulator has failed, and

nodes N35 and N5 correspond to the class of normal behaviors.

To test the accuracy of the acquired knowledge we ran experiments, where we pre-

dicted the class for behaviors that COBWEB/3 was not trained on. We focused on

behaviors where a pressure regulator has failed closed and on nominal behaviors, under

different operating conditions: when different jets fire, for different periods, under dif-

ferent temperatures, etc. For each experiment we trained COBWEB/3 on fifty behavior

summaries, presented in random order, and tested prediction accuracy on six behavior
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summaries,which were not usedfor training. The accuracyachievedwas85.5%,aver-
agedover30 runs. Given the limited amount of data for training, this level of accuracy
is promising.

In this case,categorization is performedaswenoted earlier - a behavior summary is
matched against all categoriesat the top level of the tree. The behavior is categorized
relative to the 'best matching' behaviorcategory,andcategorizationrecursivelycontinues
downwardto descendentsof this best matching node. In this project, wherethe system
parameterson which categorizationis basedare all being monitored and transmitted to
Earth, this categorizationstrategy is reasonable.However,if senseddata is not sufficient
for categorizationand further probing is necessary,then we cannot assumeall features
canbe accessedsimultaneously.Rather, wewish to selectand executeindividual, probes
in someorder. This was the motivation for the attention-focusingapproach that we
describedearlier.

6.7 Current Research

Our work with the Space Shuttle RCS, as described thus far, involves several stages

of data processing and analysis: segmentation, summarization, and clustering. Each of

these can be improved. Currently, we segment into uniform ranges fit this with a linear

equation. However, we plan to investigate other methods which we briefly outline. In

general, the characteristics of a signal vary depending on the operating mode of the

system. The Data Acquisition module partitions the continuous stream of data points

into intervals of homogeneous behavior characteristics. Depending on the signal's class,

different techniques can be used. For example, one can detect abrupt changes in the

spectral behavior of a signal, or abrupt changes in the mean level. For deterministic

signals for which approximate models are known one can use the Minimum Message

Length principle to decide when a break would yield a "better" description (Rao & Lu,

1992). Naturally, information regarding mode changes can also be gained by observing

known commands to and talk-back fl'om the system.

After an interval has been identified, the behavior of all signals is characterized. De-

pending on the signal, one or more of various methods can be used. One can characterize

a signal's amplitude. A simple way is to compute its mean value, its mean square value

(or power), and its variance. A more informative technique, which captures all the above

information and more, estimates the probability density function (pdf) of the amplitude.

The pdf, however, does not contain any information about the shape of a signals plot over

time. To capture this, one can either characterize the signals spectrum or estimate its

autocorrelation function. A promising approach to segmentation and subsequent fitting

of multiple models to the data are the use of MDL principles as reported by Rao and Lu

(1992).

Thus far, we have discussed cluster analysis for discovering operating modes. This in-

volves segmenting and summarizing temporal data streams in preparation for clustering.

A second aspect of this work is the discovery of transitions between operating modes.

Transitions can be identified, in part, by talkback with the system However, we wish

to independently verify that transitions are as expected. Our tentative approach is re-
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Figure 21: Diagnostic system for the RCS.

gard operating mode categories discovered through clustering as a reduced 'alphabet' of

behaviors. Telemetry data is reexpressed in terms of this alphabet and methods of state-

machine or sequence induction (Dietterich gz Michalslki, 1986) are applied to discover a

network of transitions that are to be expected from the data sampled or, in the case of

Space Station simulations, from the data generated through model-based simulation.

The complete architecture that we propose is illustrated in Figure 21. Behavior

summaries, generated by the initial 'data acquisition' component, are first classified using

the classifier constructed by COBWEB. If a behavior summary is very different from all

known classes, a new singleton class is formed (via standard COBWEB methods that we

have not elaborated here). Novel behaviors are thus detected and the system operator is

warned, even when the system has not been trained on them. When a behavior summary

is classified to a known class annotated as faulty, again the system operator is warned

and information from the annotation is also presented. When the classification is to a

known class annotated as normal, that class is compared to the one predicted by the

state machine from the last known state. If the transition at hand is novel, and thus

unexpected, or is known to be associated with a malfunction, an appropriate warning is

generated.

6.8 Summary

Our work in diagnosis renders diagnosis more efficient than model-based approaches

when these models exist and are used, and it is perhaps the most viable approach when
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no model exists, as is the casein our work with the SpaceShuttle. We proposeda
cluster-analyticapproachthat is quite dissimilar from earlier work by Wu (1990, 1991)
in implementation,but similar in intent. Like Wu, we definea measureof explanatory
powerknownas category utility, and use it to organize observations into similarity classes.

These probabilistically-described behavior classes are efficiently examined for purposes

of probe selection. Probe selection with probabilistic class definitions is not as efficient

as say a decision tree approach, but it incorporates redundancies that make it robust in

the face of noise and flexible in the face of differing initially known conditions.
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